Assignments Nonparametric Bayesian Statistics lectures

June 2016

- 1. Let Θ be a Polish space, let \mathcal{B} be its Borel σ -algebra, and let Π be a probability measure on (Θ, \mathcal{B}) . Prove that there exists a smallest closed set $F \subset \Theta$ such that $\Pi(F) = 1$. The set F is called the *support* of the measure Π .
- 2. Let P be a Dirichlet process on \mathbb{R} with base measure α . Use the stick-breaking representation to prove that P a.s. has full support if and only if α has full support.
- 3. Let $P \sim DP(\alpha)$, with α a finite base measure on \mathbb{R} . Given P, let X_1, \ldots, X_n be i.i.d., real-valued random variables with distribution P. Let ψ be a bounded, measurable function.
 - (a) Compute the posterior mean and variance of $\int \psi dP$. (Hint: first consider $\psi = 1_A$.)
 - (b) Prove that if the data are in actual fact sampled from the true distribution P_0 , then as $n \to \infty$, the posterior distribution of $\int \psi \, dP$ tends to the Dirac measure concentrated at $\int \psi \, dP_0$ in an appropriate sense.
- 4. Consider observations Y_1, \ldots, Y_n satisfying

$$Y_i = f(i/n) + \varepsilon_i, \qquad i = 1, \dots, n,$$

where the ε_i are i.i.d. standard normals and $f:[0,1] \to \mathbb{R}$ is an unkown, continuous regession function. We employ a nonparametric Bayes procedure to estimate f and put a Gaussian prior Π_n on f, defined as the law of $W_n = c_n W$, where c_n is a given sequence of positive numbers and W is a Brownian motion with standard normal initial distribution.

- (a) Determine a (good) upper bound for $-\log Pr(\|W_n\|_{\infty} < \varepsilon)$ (with $\|\cdot\|_{\infty}$ the supremum-norm on [0,1]).
- (b) Determine the RKHS \mathbb{H}_n of the process W_n and the corresponding RKHS-norm.
- (c) For $f_0 \in C^{\beta}[0,1]$, with $\beta \in (0,1]$, determine a (good) upper bound for

$$\inf_{h \in \mathbb{H}_n : \|h - f_0\|_{\infty} \le \varepsilon} \|h\|_{\mathbb{H}_n}^2.$$

(d) Show that there exists a choice for the rescaling sequence c_n such that if the true regression function satisfies $f_0 \in C^{\beta}[0,1]$ for $\beta \in (0,1]$, then the posterior contracts around f_0 at the rate $n^{-\beta/(1+2\beta)}$.