Large deviations, moment problems and sum rules

Jan Nagel

TU Dortmund

40th Finnish Summer School on Probability and Statistics Lammi, 23.05. - 27.05.

Overview

In this course, we will talk about (random) probability measures in different languages – in terms of *moments*, *orthogonal polynomials or densities*.

Sometimes, switching to another language is easier in order to formulate properties/convergence or distributions of random measures.

For large deviation statement in particular, it is helpful to have different descriptions at hand, which opens up a very interesting connections between random matrices and important identities in spectral theory called *sum rules*.

By proving large deviation in two different languages, we obtain a probabilistic proof and interpretation of a sum rule

$$\mathcal{I}_{A}(\mu) = \mathcal{I}_{B}(\mu).$$

Overview

1st lecture: Random moments and large deviations

2nd lecture: Large deviation for random matrices and sum rules

3rd lecture: A probabilistic proof of sum rules

Overview

1st lecture: Random moments and large deviations

2nd lecture: Large deviation for random matrices and sum rules

3rd lecture: A probabilistic proof of sum rules

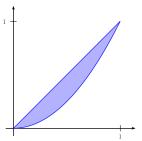
The classical moment problem

- Let $\mathcal{P}([0,1])$ be the set of all probability measures on [0,1].
- For $\mu \in \mathcal{P}([0,1])$, let $m_k(\mu) = m_k = \int x^k \, d\mu(x)$ be the k-th moment.
- $\mu \in \mathcal{P}([0,1])$ is uniquely determined by its moment sequence.
- ullet The moment space: $\mathcal{M}([0,1])=\{(m_k(\mu))_{k\geq 1}: \mu\in\mathcal{P}([0,1])\}$
- Hausdorff moment problem (classical/deterministic): Is a given sequence $c = (c_k)_{k \ge 1}$ a moment sequence, i.e., is

$$c \in \mathcal{M}([0,1])$$
?

The classical moment problem

- The *n*-th Moment space: $\mathcal{M}_n([0,1])=\{(m_1(\mu),\ldots,m_n(\mu)):\mu\in\mathcal{P}([0,1])\}$
- $\mathcal{M}_n([0,1])$ is the convex hull of $\{(x, x^2, \dots, x^n) : x \in [0,1]\}$.



- Given $m_1 \in \mathcal{M}_1([0,1]) = [0,1]$, we have $(m_1,m_2) \in \mathcal{M}_2([0,1])$ iff $m_1^2 \leq m_2 \leq m_1$.
- Given $(m_1, \ldots, m_{n-1}) \in \mathcal{M}_{n-1}([0,1])$, there exists m_n^+, m_n^- (depending on first n-1 moments), such that:

$$(m_1,\ldots,m_n)\in\mathcal{M}_n([0,1])\quad\Leftrightarrow\quad m_n^-\leq m_n\leq m_n^+$$

Moreover, $m_n^- < m_n^+$, iff $(m_1, \ldots, m_{n-1}) \in \text{Int}(\mathcal{M}_{n-1}([0,1]))$.

Answer to the classical moment problem

- $(c_1, \ldots, c_n) \in \mathcal{M}_n([0,1])$ iff $L(P) = \sum_{i=0}^n a_i c_i \ge 0$ whenever $P(x) = a_n x^n + \cdots + a_0$ is a polynomial nonnegative on [0,1].
- A polynomial P of degree 2m is nonnegative on [0,1] iff there are polynomials B_m , C_{m-1} such that

$$P(x) = B_m(x)^2 + x(1-x)C_{m-1}(x)^2$$

• A polynomial P of degree 2m+1 is nonnegative on [0,1] iff there are polynomials B_m , C_m such that

$$P(x) = xB_m(x)^2 + (1-x)C_m(x)^2$$

ullet So $(c_1,\ldots,c_n)\in\mathcal{M}_n([0,1])$ iff

$$L(B_m^2)$$
, $L(x(1-x)C_{m-1}^2)$, $L(xB_m^2)$, $L((1-x)C_m^2)$

are nonnegative, whenever L is applies to a polynomial of degree $\leq n$.

Answer to the classical moment problem

ullet $(c_1,\ldots,c_n)\in\mathcal{M}_n([0,1])$ iff

$$L(B_m^2), \quad L(x(1-x)C_{m-1}^2), \quad L(xB_m^2), \quad L((1-x)C_m^2)$$

are nonnegative, whenever L is applies to a polynomial of degree $\leq n$.

Define the Hankel matrices

$$\underline{H}_{2m} = \begin{pmatrix} c_0 & \dots & c_m \\ \vdots & & \vdots \\ c_m & \dots & c_{2m} \end{pmatrix} \quad \overline{H}_{2m} = \begin{pmatrix} c_1 - c_2 & \dots & c_m - c_{m+1} \\ \vdots & & \vdots \\ c_m - c_{m+1} & \dots & c_{2m-1} - c_{2m} \end{pmatrix}
\underline{H}_{2m+1} = \begin{pmatrix} c_1 & \dots & c_{m+1} \\ \vdots & & \vdots \\ c_{m+1} & \dots & c_{2m+1} \end{pmatrix} \quad \overline{H}_{2m+1} = \begin{pmatrix} c_0 - c_1 & \dots & c_m - c_{m+1} \\ \vdots & & \vdots \\ c_m - c_{m+1} & \dots & c_{2m} - c_{2m+1} \end{pmatrix}$$

• Then $(c_1,\ldots,c_n)\in\mathcal{M}_n([0,1])$ iff \underline{H}_k and \overline{H}_k are nonnegative definite for all $k\leq n$. In particular, $(c_1,\ldots)\in\mathcal{M}([0,1])$ iff \underline{H}_k and \overline{H}_k are nonnegative definite for all k.

The probabilistic moment problem

- Idea of Chang, Kemperman, Studden (1993): To understand the shape and structure of $\mathcal{M}_n([0,1])$, look at a typical point.
- Let $m^{(n)}$ be uniformly distributed on $\mathcal{M}_n([0,1])$, study the asymptotics of

$$(m_1^{(n)},\ldots,m_k^{(n)}).$$

 Problem: moment space has complicated structure, strong dependency between moments

$$m_1 \le m_2 \le m_1^2, \qquad \frac{m_2^2}{m_1} \le m_3 \le m_2 - \frac{(m_1 - m_2)^2}{1 - m_1}$$

• Map to new coordinates, which are easier to handle...

Canonical moments

For $(m_1, \ldots, m_n) \in \operatorname{Int}(\mathcal{M}_n([0,1]))$, define the canonical moments

$$u_k = \frac{m_k - m_k^-}{m_k^+ - m_k^-}.$$

That is, u_k is the relative position of m_k in the interval of possible k-th moments. Well-defined since $m_k^- < m_k^+$.

$$u_1 = m_1, \qquad u_2 = \frac{m_2 - m_1^2}{m_1 - m_1^2}, \quad \dots$$

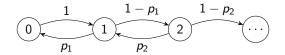
Nice properties:

- $u_k \in (0,1)$
- The u_k are invariant under linear transformations of measure.
- μ is symmetric w.r.t. $\frac{1}{2}$ iff all odd canonical moments are $\frac{1}{2}$.

Canonical moments and random walks

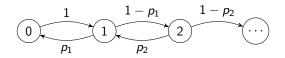
For $p_k \in [0,1], k \geq 1$, let $(X_n)_{n\geq 0}$ be the random walk on \mathbb{N}_0 starting at 0 and with transition probabilities

$$\mathbb{P}(X_{n+1} = y | X_n = x) = \begin{cases} p_k & \text{if } y = x - 1, \\ 1 - p_k & \text{if } y = x + 1. \end{cases}$$



- There exists a unique p.m. μ on [0,1] such that $m_k = m_k(\mu) = \mathbb{P}(X_{2k} = 0|X_0 = 0)$.
- 1-to-1 relation between p_1, \ldots, p_n and m_1, \ldots, m_n .

Canonical moments and random walks



- There exists a unique p.m. μ on [0,1] such that $m_k = m_k(\mu) = \mathbb{P}(X_{2k} = 0 | X_0 = 0)$.
- 1-to-1 relation between p_1, \ldots, p_n and m_1, \ldots, m_n .
- Fixing m_1, \ldots, m_{n-1} (or fixing p_1, \ldots, p_{n-1}), $m_n = m_n^-$ is minimized for $p_n = 0$ and $m_n = m_n^+$ is maximized for $p_n = 1$.
- $m_n m_n^- = (1 p_1) \dots (1 p_{n-1}) p_n \dots p_1$ is probability of single path going to n and back.
- Maximizing this (setting $p_n = 1$) gives

$$m_n^+ - m_n^- = (1 - p_1) \dots (1 - p_{n-1}) p_{n-1} \dots p_1.$$

• Therefore,

$$p_n = \frac{m_n - m_n^-}{m_n^+ - m_n^-},$$

that is, the p_n are the canonical moments u_n of μ .

Distribution of canonical moments

- Let $(m_1^{(n)}, \ldots, m_n^{(n)})$ be uniformly distributed on $\mathcal{M}_n([0,1])$.
- Density of canonical moments $(u_1^{(n)}, \ldots, u_n^{(n)})$:

$$\frac{1}{\operatorname{Vol}\mathcal{M}_n([0,1])}\mathbb{1}_{\{u_k\in(0,1)\}}\det\left(\frac{\partial m_k}{\partial u_\ell}\right)_{k,\ell}$$

• Since m_k depends only on u_1, \ldots, u_k , the matrix is lower triangular and

$$\det\left(\frac{\partial m_k}{\partial u_\ell}\right)_{k,\ell} = \prod_{k=1}^n \frac{\partial m_k}{\partial u_k} = \prod_{k=1}^n (m_k - m_k^-)$$

$$= \prod_{k=1}^n u_1(1 - u_1) \dots u_{k-1}(1 - u_{k-1})$$

$$= \prod_{k=1}^n [u_k(1 - u_k)]^{n-k}$$

• So the $u_1^{(n)}, \ldots, u_n^{(n)}$ are independent and

$$u_k^{(n)} \sim \text{Beta}(n-k+1, n-k+1).$$

Distribution of canonical moments

For $(m_1^{(n)},\ldots,m_n^{(n)})$ uniformly distributed on $\mathcal{M}_n([0,1])$, the canonical moments $u_1^{(n)},\ldots,u_n^{(n)}$ are independent and

$$u_k^{(n)} \sim \text{Beta}(n-k+1, n-k+1).$$

Consequences:

- Vol $\mathcal{M}_n([0,1]) = \prod_{k=1}^n \frac{\Gamma(n-k+1)^2}{\Gamma(2(n-k-1))} = 2^{-n^2(1+o(1))}$
- Each $u_k^{(n)}$ converges in probability to $\frac{1}{2}$. The measure with canonical moments all equal to $\frac{1}{2}$ is the arcsine measure on [0,1],

$$d\mu_{\rm arc}(x) = \frac{1}{\pi \sqrt{x(1-x)}} dx$$

• The explicit distribution also allows to show CLT and a large deviation principle, exponentially fast concentration of measure.

Large deviations

Let \mathcal{X} be a complete separable metric space with Borel σ -algebra, $\mathcal{I}: \mathcal{X} \to [0, \infty]$ and $a_n \to \infty$.

We say that a sequence $(X_n)_n$ of \mathcal{X} -valued r.v. satisfies the *large deviation* principle with speed a_n and rate function $\mathcal{I}: \mathcal{X} \to [0, \infty]$, if \mathcal{I} is lower semicontinuous and

- $\bullet \ \text{for} \ C \ \text{closed:} \ \limsup_{n \to \infty} \frac{1}{a_n} \log \mathbb{P} \big(X_n \in C \big) \leq -\inf_{x \in C} \mathcal{I} \big(x \big),$
- for O open: $\liminf_{n\to\infty} \frac{1}{a_n} \log \mathbb{P}(X_n \in O) \ge -\inf_{x\in O} \mathcal{I}(x)$.

We will only consider *good* rate functions, i.e., the level sets $\{x: \mathcal{I}(x) \leq L\}$ are compact for all L.

As a consequence:

$$\lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{a_n} \log \mathbb{P}(X_n \in B_{\varepsilon}(x)) = -\mathcal{I}(x)$$

or informally,

$$\mathbb{P}(X_n \approx x) \approx e^{-a_n \mathcal{I}(x)}.$$

Large deviations

Some general principles:

- The rate function is unique.
- If $(X_n)_n$ and $(Y_n)_n$ are independent, each satisfying the LDP with rate \mathcal{I}_X , \mathcal{I}_Y , then $(X_n, Y_n)_n$ satisfies the LDP with rate $\mathcal{I}(x, y) = \mathcal{I}_X(x) + \mathcal{I}_Y(y)$.
- Dawson-Gärtner Theorem: If $X_n = (X_1^{(n)}, X_2^{(n)}, \dots)$ has values in $\mathcal{X}^{\mathbb{N}}$ and for each k, the projection $(\pi_k(X_n))_n$ onto the first k coordinates satisfies the LDP with rate \mathcal{I}_k , then $(X_n)_n$ satisfies the LDP (in product topology) with rate

$$\mathcal{I}(x) = \sup_{k} \mathcal{I}_{k}(\pi_{k}(x)).$$

• Contraction principle: If $(X_n)_n$ satisfies LDP in $\mathcal X$ with rate $\mathcal I_X$ and $f: \mathcal X \to \mathcal Y$ is continuous, then $(f(X_n))_n$ satisfies the LDP in $\mathcal Y$ with rate

$$\mathcal{I}_Y(y) = \inf \{ \mathcal{I}_X(x) : f(x) = y \}.$$

Large deviation for canonical moments

• Easy situation: If X_n has a density on U (open)

$$C_n^{-1}F(x)\exp\{-nG(x)\}$$

with G continuous with compact level sets, $\inf_x G(x) = 0$ and $F \in L^1$ with $F > \varepsilon > 0$, then

$$\int_{A} C_{n}^{-1} F(x) \exp\{-nG(x)\} dx = \exp\{-n \inf_{x \in A} G(x)(1 + o(1))\}$$

and $(X_n)_n$ satisfies the LDP with speed n and rate function G.

• The canonical moment $u_k^{(n)}$ has a density of the form

$$C_n \exp\{-(n-k)(-\log(x-x^2)-\log(4))\}$$

so that $(u_k^{(n)})_n$ satisfies the LDP with speed n and rate function

$$H(x) = -\log(x - x^2) - \log(4).$$

Large deviation for canonical moments

• Each $(u_k^{(n)})_n$ satisfies the LDP with rate function

$$H(x) = -\log(x - x^2) - \log(4).$$

• Since the canonical moments are independent: $(u_1^{(n)}, \dots, u_k^{(n)})_n$ satisfies LDP with rate function

$$H_k(u_1,\ldots,u_k)=\sum_{i=1}^k H(u_i).$$

• By the Dawson-Gärtner Theorem: The sequence $(u_1^{(n)}, \dots)_n$ satisfies LDP with rate function

$$H_{\infty}(u_1,\ldots)=\sup_{k\geq 1}H_k(u_1,\ldots,u_k)=\sum_{i=1}^{\infty}H(u_i).$$

From random moments to random measures

- For $(m_1, \ldots, m_{2n-1}) \in \operatorname{Int} \mathcal{M}_{2n-1}([0,1])$, there are infinitely many measures with these first 2n-1 moments.
- There is a unique measure μ_n (called lower principal representation) corresponding to the moment sequence

$$(m_1,\ldots,m_{2n-1},m_{2n}^-,m_{2n+1}^-,\ldots)$$

or equivalently to the sequence of canonical moments

$$(u_1,\ldots,u_{2n-1},0,0,\ldots).$$

• Recall the random walk interpretation: μ_n satisfies

$$m_k(\mu_n) = \mathbb{P}(X_{2k} = 0 | X_0 = 0) = (P^{2k})_{1,1}$$

when P is the transition matrix of the random walk.

From random moments to random measures

• A direct calculation shows: $m_k(\mu_n) = (P^{2k})_{1,1} = (J_n^k)_{1,1}$

where (with $u_0 = 0$)

$$b_k = (1 - u_{2k-3})u_{2k-2} + (1 - u_{2k-2})u_{2k-1}$$

$$a_k = \sqrt{(1 - u_{2k-2})u_{2k-1}(1 - u_{2k-1})u_{2k}}$$

- We call the measure μ_n with moments $m_k(\mu_n) = (J_n^k)_{1,1}$ the spectral measure of J_n .
- A moment comparison shows:

$$\mu_n = \sum_{i=1}^n w_i \delta_{\lambda_i}$$

where λ_i are the (distinct) eigenvalues of J_n with orthonormal eigenvectors v_i and $w_i = v_{i,1}^2$.

Relation between moments and measures

We have a continuous bijection between:

- ullet a moment vector $(m_1,\ldots,m_{2n-1})\in \mathrm{Int}\mathcal{M}_{2n-1}([0,1])$
- canonical moments $(u_1,\ldots,u_{2n-1})\in (0,1)^{2n-1}$
- a spectral measure μ_n with n support points in (0,1)

This can be extended to infinite sequences, there is a 1-to-1 correspondence between:

- ullet a moment vector $(m_1,m_2,\dots)\in \mathrm{Int}\mathcal{M}([0,1])$
- ullet canonical moments $(u_1,u_2,\dots)\in (0,1)^{\mathbb{N}}$
- ullet a spectral measure μ (of an infinite tridiagonal matrix J) with infinitely many support points

In particular, the infinite canonical moment sequence $(\frac{1}{2}, \frac{1}{2}, \dots)$ gives the infinite matrix J with spectral measure the arcsine distribution $\mu_{\rm arc}$.

From convergence of moments to measures

The mapping from $(u_1,\ldots,u_{2n-1},0,\ldots)$ to the spectral measure μ_n is continuous, the LDP for the canonical moments can be transferred with the contraction principle.

Chang, Kemperman, Studden (1993); Gamboa, Lozada-Chang (2004):

For $(m_1^{(n)},\ldots,m_{2n-1}^{(n)})$ uniformly distributed on $\mathcal{M}_{2n-1}([0,1])$ with lower principal representation μ_n ,

$$\mu_n \xrightarrow[n \to \infty]{\mathbb{P}} \mu_{\rm arc}$$

and $(\mu_n)_{n\geq 1}$ satisfies the LDP with speed n and rate function

$$\mathcal{H}(\mu) = \sum_{k=1}^{\infty} -\log(u_k(\mu) - u_k(\mu)^2) - \log(4).$$

Note that the rate function has unique minimizer $\mu_{\rm arc}$ and $\mathcal{H}(\mu)=\infty$, if μ has finite support.

Rewriting the rate function

The rate function can be rewritten as

$$\mathcal{H}(\mu) = \lim_{n \to \infty} \sum_{k=1}^{n} -\log(u_{k}(\mu) - u_{k}(\mu)^{2}) - \log(4)$$

$$= \lim_{n \to \infty} -\log\left(4^{n} \prod_{k=1}^{n} u_{k}(\mu)(1 - u_{k}(\mu))\right)$$

$$= \lim_{n \to \infty} -\log\left(4^{n} (m_{n+1}^{+}(\mu) - m_{n+1}^{-}(\mu))\right)$$

Grenander, Szegő (1958):

$$\lim_{n\to\infty} -\log\left(4^n(m_{n+1}^+(\mu)-m_{n+1}^-(\mu))\right) = \mathcal{K}(\mu_{\mathrm{arc}}|\mu)$$

where $\mathcal{K}(\mu_{\mathrm{arc}}|\mu) = \int \log \frac{\mathrm{d}\mu_{\mathrm{arc}}}{\mathrm{d}\mu} \mathrm{d}\mu_{\mathrm{arc}} = -\int \log(w) \, \mathrm{d}\mu_{\mathrm{arc}}$ is the Kullback-Leibler divergence, rewritten for $\mathrm{d}\mu(x) = w(x) \mathrm{d}\mu_{\mathrm{arc}}(x) + \mathrm{d}\mu_{\mathrm{s}}(x)$.

A first sum rule

$$\bullet \qquad \mathcal{H}(\mu) = \sum_{k=1}^{\infty} -\log(4(u_k(\mu) - u_k^2(\mu))) = \mathcal{K}(\mu_{\mathrm{arc}}|\mu)$$

- ullet The rate function depends only on the part absolutely continuous w.r.t. $\mu_{
 m arc}.$
- For $\bar{m} \in \operatorname{Int} \mathcal{M}_{\ell}([0,1])$, let $\mathcal{S}(\bar{m})$ be the set of p.m. with those first moments. Then the rate function is minimized over $\mathcal{S}(\bar{m})$ by choosing $u_k = \frac{1}{2}$ for $k > \ell$, so that

$$\begin{split} \log(4^{\ell}(m_{\ell+1}^{+} - m_{\ell+1}^{-})) &= \sum_{k=1}^{\ell} - \log(4(\bar{u}_{k} - \bar{u}_{k}^{2})) \\ &= \inf_{\mu \in \mathcal{S}(\bar{m})} \mathcal{H}(\mu) = \inf_{\mu \in \mathcal{S}(\bar{m})} \mathcal{K}(\mu_{\mathrm{arc}}|\mu). \end{split}$$

• The infimum is attained at a unique $\bar{\mu}$ with canonical moments $u_k = \frac{1}{2}$ for $k > \ell$. $\bar{\mu}$ is of Bernstein-Szegő-type,

$$d\bar{\mu}(x) = \frac{1}{Q(x)\sqrt{x(1-x)}}dx$$
, Q polynomial.

The constrained moment problem

• Fix $\bar{m} \in \mathrm{Int}\mathcal{M}_{\ell}([0,1])$ and let $\bar{\mu}_n$ have moments uniformly distributed on

$$\{m^{(2n-1)} \in \mathcal{M}_{2n-1}([0,1]) : m_k^{(2n-1)} = \bar{m}_k \text{ for } k \le \ell\}.$$

• Let φ be the continuous mapping, which sets the first ℓ moments to \bar{m} , then by the contraction principle, $(\bar{\mu}_n)_n$ satisfies the LDP in $\mathcal{S}(\bar{m})$ with rate function

$$\begin{split} \bar{\mathcal{H}}(\mu) &= \inf_{\nu:\varphi(\nu)=\mu} \mathcal{H}(\nu) \\ &= \sum_{k=\ell+1}^{\infty} -\log(4(u_k(\mu) - u_k(\mu)^2)) \\ &= \sum_{k=1}^{\infty} -\log(4(u_k(\mu) - u_k(\mu)^2)) - \sum_{k=1}^{\ell} -\log(4(\bar{u}_k - \bar{u}_k^2)) \\ &= \mathcal{K}(\mu_{\mathrm{arc}}|\mu) - \mathcal{K}(\mu_{\mathrm{arc}}|\bar{\mu}). \end{split}$$

• In particular, $\bar{\mu}_n$ converges exponentially fast to $\bar{\mu}$.

Thank you for your attention!

- F. Chang, J. Kemperman, W. Studden, *A normal limit theorem for moment sequences*, The Annals of Probability 21, 1993
- F. Gamboa, L. Lozada-Chang, Large deviations for random power moment problem, The Annals of Probability 32, 2004
- H. Dette, D. Tomecki, M. Venker, *Random moment problems under constraints*, The Annals of Probability 48, 2020